Page 1



	3GPP TSG-T2 #12

Los Angeles, California, USA

12th - 16th February 2001
	T2-010285 


Informative to T2

Subject:
Addition of SyncML to 27.103

Attachments:
None

___________________________________________________________________________

Please find appended a CR concerning the addition of SyncML to 27.103.  Related to this CR is the liaison statement T2-010287, requesting an extension to the 27.103 Release 4 submission date,

T2 requests that T approve this CR to 27.103 and T2-010287 if either of the following conditions occur prior to the T meeting on 14th to 16th March, 2001:

1. The IrDA vote on the in-process IrMC errata to add SyncML to the IrMC specification is delayed beyond the TSG T meeting for any reason.

2. The IrDA vote on the in-process IrMC errata to add SyncML to the IrMC specification is other than accept for any reason.

T2 thanks T for their attention and consideration in this matter.

3GPP TSG-T2 Meeting #12 
T2-010285

Los Angeles, California, USA, 12th - 16th February 2001
	CR-Form-v3

	

	(

	27.103
	CR
	
	(


	
	(

Current version:
	3.1.0
	(


	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	X
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Change Request to add SyncML to Wide Area Network synchronisation standard

	
	

	Source:
(

	Ericsson, Motorola, and Nokia

	
	

	Work item code:
(

	SYNC
	
	Date: (

	15-Feb-2001

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-4

	
	Use one of the following categories:
F  (essential correction)
A  (corresponds to a correction in an earlier release)
B  (Addition of feature), 
C  (Functional modification of feature)
D  (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	The updated 27.903 reflects a significant change in the data synchronisation technology environment.  27.103 needs to be updated to reflect that change.

	
	

	Summary of change:
(

	Add informative references to and definitions for the SyncML standard and remove reference to wide industry support in Section 4.1. Fixed various spelling errors.

	
	

	Consequences if 
(

not approved:
	3GPP needs to keep up with a changing technology environment.  To ignore significant changes in technologies ensures that 3GPP specifications will be obsolete before they reach products.

	
	

	Clauses affected:
(

	Chapters 1, 3.1, 3.2, 4.1, 4.3, added Chapter 4.4, retitled Chapters 5, 6, and 7 to reflect the Release 99 nature of the subject matter, added Chapter 8 to cover Release 4’s addition of SyncML.

	
	

	Other specs
(

	
	 Other core specifications
(

	

	Affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	The updated 27.903 reflects a significant change in the data synchronisation technology environment.  27.103 needs to be updated to reflect that change.


How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.  Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to the change request.
3GPP TS 27.103 V3.1.0 (2000-10)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Terminals;

Wide area network synchronization standard

(Release 1999)

[image: image1.png]K ey




The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
 
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
 
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, terminal, WAN

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.


Contents

8Foreword

1
Scope
9
2
References
9
3
Definitions and abbreviations
9
3.1
Definitions
9
3.2
Abbreviations
11
4
Background
11
4.1
IrMC
11
4.2
Bluetooth
11
4.3
WAP
11
5
Use of IrMC Level 4 Sync
12
6
Tunnelling of OBEX with the Use of IrMC
12
6.1
Introduction of State
12
6.2
Client/Server
12
6.3
Binary Post
13
6.4
The secure connection
13
6.5
Connect
13
6.6
Disconnect
14
6.6.1
Client disconnection
14
6.6.2
Server disconnection
14
6.7
Put
14
6.8
Get
15
6.9
Timeouts
15
Use Case with IrMC
15
8
Use of SyncML
16
8.1
SyncML Overview
16
8.1.1
Reduce the number of messages being sent over the air
16
8.1.2
Reduce the message size
17
8.1.3
Provide a robust authentication mechanism
17
8.1.4
Transport Independence
17
8.1.5
Datatype Independence
17
8.2
Change of Client/Server Roles from Release 99
17
8.3
Transport Bindings
18
8.4
Security
18
8.5
Connection
18
8.6
Sending and Receiving Information
18
8.7
Intermittent Connectivity
18
8.8
Compatibility with Release 99
18
8.9
Use Case with SyncML
19
Annex A (informative): Change history
20



























Foreword

This Technical Specification has been produced by the 3GPP.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
Indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the specification;

1
Scope

This specification provides a definition of a Wide Area Synchronisation protocol. The synchronisation protocol is based upon current synchronisation industry standards.
The present document covers Wide Area Network Synchronisation between current and future mobile communication end-user devices, desktop applications and server-based information servers.  This is a living document and, as such, it will evaluate new technologies (e.g. XML) for inclusion as they become readily available.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.


References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.


For a specific reference, subsequent revisions do not apply.


For a non-specific reference, the latest version applies.


A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

[1]
Bluetooth: Bluetooth SIG, Bluetooth Specifications, version 1.0, July 1999. (http://www.bluetooth.com/)

[2]
IrMC, Infrared Data Association, "Specifications for Ir Mobile Communications (IrMC)", version 1.1, 01 March 1999, plus all applicable errata. (http://www.irda.org/)

[3]
IrOBEX, Infrared Data Association, "Ir Object Exchange Protocol IrOBEX", version 1.2, April 1999, plus all applicable errata. (http://www.irda.org/)

[4]
vCalendar, the Internet Mail Consortium, "vCalendar - The Electronic Calendaring and Scheduling Exchange Format - Version 1.0", 18 September 1996. (http://www.imc.org/pdi/vcal‑10.doc)

[5]
vCard, the Internet Mail Consortium, "vCard - The Electronic Business Card - Version 2.1", 18 September 1996.(http://www.imc.org/pdi/vcard‑21.doc)

[6]
WAP, WAP Forum, "WAP Technical Specifications Suite", version 1.1, June 1999. (http://www.wapforum.com/)

[7]
XML, W3C, “Extensible Markup Language (XML) 1.0”, v1.0, REC-xml‑19980210, Feb 1998

[8]
SyncML initiative, SyncML Technical Specifications, version 1.0


(http://www.syncml.org)

[9]
3G TR 27.903 V3.x.x, Discussion of Synchronisation Standards

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

Bluetooth: a technology specification for short range radio links between mobile PCs, mobile phones and other portable devices. (http: //www.bluetooth.com/)

GET: the operation of requesting that the server returns an object to the client as defined in the IrDA IrOBEX specification

GSM: Global System for Mobile communications

HTTP: HyperText Transfer Protocol

IrDA: an industry consortium set up to define a set of short range Ir communications standards. (http: //www.irda.org/)

Level 1: minimum level support defined in the IrDA IrMC set of specifications

Level 2: access level support defined in the IrDA IrMC set of specifications

Level 3: index level support defined in the IrDA IrMC set of specifications

Level 4: sync level support defined in the IrDA IrMC set of specifications

MapItems:
describes to the server the mapping of a local UID to a server UID
MIME:  Multipurpose Internet Mail Extension
PUT: the operation of sending one object from the client to the server as defined in the IrDA IrOBEX specification

SSL: Secure Socket Layer

Sync Alert:
A SyncML command for requesting a synchronisation on a particular datastore.

Synchronisation: the process of exchanging information between multiple physical or virtual locations for the purpose of ensuring that each location's copy of that information reflects the same information content

SyncML initiative: an industry initiative set up to define a data synchronisation standard based on XML (http://www.syncml.org/)

vCalendar: a format defined by the IMC for electronic calendaring and scheduling exchange with extensions as defined in the IrDA IrMC set of specifications

vCard: a format defined by the IMC for electronic business card exchange with extensions as defined in the IrDA IrMC set of specifications

WAP: an industry consortium set up to define a set of standards to empower mobile users with wireless devices to easily access and interact with information and services. (http: //www.wapforum.com/)

Wide Area Network: a geographically-large range wireless connection between two or more devices for the purpose of transferring information. Large geographical range is typically defined as one kilometer or more in distance

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

Cookie
a method of tracking http-based information

IETF
Internet Engineering Task Force

IMC
Internet Mail Consortium

Ir
Infrared

IrDA
Infrared Data Association

IrMC
Ir Mobile Communications

IrOBEX
Ir Object EXchange

OBEX
Object Exchange

PDA
Personal Digital Assistant

PIM
Personal Information Manager

SyncML
Synchronisation Markup Language.
UID
Unique Identification
URL
Universal Resource Location

WAP
Wireless Application Protocol

WBXML
Wireless Binary XML

WML
Wireless Markup Language

WSP
Wireless Session Protocol

XML
eXtensible Markup Language

4
Background

This background material is a synopsis of the material presented in 3G TR 27.903 [9].
4.1
IrMC

The IrMC standard was developed as an extension to the IrDA standard for the purpose of providing an open standard for data exchange between mobile devices or between mobile devices and desktops or PDAs. Among other things, IrMC defines four levels of support for information exchange.  By definition, each higher level must support all of the preceding levels. The four levels are: Level 1 (Minimum Level), Level 2 (Access Level), Level 3 (Index Level), and Level 4 (Sync Level). Level 4 does not require Level 3.  Level 2 and Level 4 are the most relevant for synchronisation. IrMC has been adopted by IrDA and Bluetooth initiatives.

4.2
Bluetooth

Bluetooth has adopted the IrMC standard as the basis for their synchronisation specification.

4.3
WAP

WAP has not specified a synchronisation standard.  The WAP Forum is currently evaluating synchronisation technologies and is expected to identify a technology later in 2001. 
4.4
SyncML

SyncML is an XML-based specification for data synchronisation.  It accommodates not only traditional local synchronisation but also the special requirements associated with remote synchronisation in wide-area wireless environments with intermittent connectivity.  SyncML is based on a client-server model.  SyncML specifications consist of three major components: representation protocol, synchronisation protocol, and transport bindings. The Representation protocol defines XML-based messages for synchronisation, whereas the Synchronisation protocol defines synchronisation in the form of message sequence charts.  The Transport binding specification defines a mechanism to carry synchronisation messages over different transport mechanisms.

5
Use of IrMC Level 4 Sync
There are two approaches regarding syncing of a mobile device.  Either the logic of the synchronisation has to be controlled by the server or by the mobile device. It has to be decided whether the mobile device should be the client or the server in the synchronisation process. As the mobile device has a limited amount of memory and limited processing capacity, it is desired to perform as much of the processing as possible outside of the mobile device. In this case the mobile device becomes the server in the synchronisation process, only performing the operations the client tells it to perform. This introduces a problem, as the mobile device is an Internet client, and now has to act like a server. How this is solved is explained in chapter 6.2.

To be able to synchronise a mobile device calendar, a set of rules for how to read and write data from and to the mobile device has to be defined. It must also be decided how to keep track of changes done in the mobile device. An existing, and widely spread, standard for this is IrMC. IrMC provides a model for how to store and access data, such as calendar items, contacts and more. IrMC is usually put in the application layer on top of the OBEX layer in an IR stack. The purpose of this document is to describe how to apply IrMC and OBEX on the Internet, using 3GPP. This requires tunneling of OBEX in 3GPP and reversing the client/server roles.

6
Tunnelling of OBEX with the Use of IrMC
There are two major problems with tunneling OBEX over a wide area network. 

The first problem is that no logical connection is kept between the client and the server. In the same way that HTTP is stateless, 3GPP only knows a client at one Request/Response-pair at the time. This means that the state awareness of an application has to be implemented by the application.

The second problem is that the client and the server roles are strictly defined. The client always requests the server and never the other way around. To get around this, a protocol has to be defined that emulates the reversion of the roles.

6.1
Introduction of State

The problem with achieving state awareness on the Internet is usually solved by creating a session object on the server that identifies the client by a cookie. Cookies are not yet a standard of 3GPP and also introduce scalability problems on the server side. The option left is to pass a Session Id between the client and the server throughout the session. This solution is widely adopted on the Internet today.

Usually, when state awareness has to be achieved on the Internet, the client is a browser and the Session Id has to be passed back and forth in hidden fields of forms. As the synchronisation of a calendar application in a mobile phone is performed by a program and does not involve a browser and no interactivity with the user, a Session Id only has to be passed to the client at initialisation of the synchronisation process. The client however has to pass the Session Id in every request to be identified by the server.

The Connection Id used in OBEX is a 4-byte number. The Session Id chosen for the synchronisation is a 128-bit (16 bytes) number. Preferably this number should be generated as a GUID (Global Unique Identifier) as these numbers are guarantied to be unique. 

6.2
Client/Server

In the case of synchronising a mobile device with a server’s data, it is preferable to put the synchronisation logic on the server side, as the mobile device has limited resources of memory and processing capacity. The synchronisation process should thus be controlled by the server. The connection however should be initiated by the client. As the Internet Request/Response model contradicts this, we have to define a way to get around this.

The approach is to let the client (the mobile device) consecutively query the server for what operation it wants to perform on the client. The client will then perform the action and query the server for a new task. This is repeated until the server has no more tasks to perform.

The client will always call the server with OBEX headers as http POST data. The reason for using POST is that there is a size limit for sending data in the URL, using the GET method. Using the POST method also avoids problems with special characters, using binary POST (binary POST is not supported in WAP1.1, however. Another solution is provided below). Every client request implies permission for the server to request a client task in its response.

6.3
Binary Post

As binary POST is not supported in WAP1.1, the OBEX headers are base64-encoded and sent as plain text.

This could result in sending 33% more than the amount of data necessary. The solution is however only temporary, awaiting WAP binary POST.

6.4
The secure connection

The authentication process only guaranties that the client and the server can rely on each others identity during the connection process. The connection that is established is not secure and could easily be tapped for information. It is therefore desired to encrypt all data that is sent between the client and the server. 3GPP currently does not guarantee strong enough encryption so we will ensure data is secure and untampered.

In the case of a synchronisation of a mobile calendar over 3GPP, there are actually two different transports that has to be considered. First it is the transport from the mobile device to the 3GPP gateway. Then there is the transport from the gateway to the web server. The transport from the mobile device to the gateway is sent over GSM, which is fairly well encrypted. The transport from the gateway to the web server is not protected in any way though. To solve this problem we will use a third party product, e.g. “Wireless Jalda”, to establish a protected connection from the gateway to the web server. This should be transparent from the mobile device and set up the required SSL connection.

6.5
Connect

The connect sequence sets up the connection from the mobile device to the web server. The session id has to be assigned in the first response from the server, as more request/response pairs are needed to complete the authentication procedure. The Connect procedure is always invoked by the client.

	
	Data
	Description

	Request

(
	<OBEX push>
	The mobile device alerts the web server, sending an empty obex push.

	

	
	

	Response

(
	<obex connect with authenticate challenge, WAN UUID  and target >
	The web server responds with a 16 byte session id and the obex headers for connect with authenticate challenge. The server also sends an obex target header, indicating calendar synchronisation.

	

	
	

	Request

(
	<obex unauthorized with authenticate challenge containing user name in realm, WAN UUID  and who header >
	The mobile device responds to the connect request by sending an unauthorized response with authenticate challenge, forcing the web server to authenticate itself. Username is sent as realm. Who header with assigned connection id.

	

	
	

	Response

(
	<obex connect with authenticate challenge and authentication response , and connection id>
	The web server verifies the mobile device and authenticates itself. 

	

	
	

	Request

(
	<obex success with authenticate response, WAN UUID  and connection id>
	The mobile device verifies the web server and sends an obex success.

	

	
	

	Response

(
	…
	The web server now starts acting like a client to the mobile device, sending PUT and GET operations to the mobile device.


6.6
Disconnect

Disconnection can either be invoked by the client or be invoked by the server as a last response. The client’s session is then destroyed in the server. A third case is that the connection is lost for other reasons, e.g. power failure by the client. In this case, the session should be timed out automatically.

6.6.1
Client disconnection

The client normally should not invoke the disconnection. Should the client however need to disconnect, the following sequence should be used:

	
	Data
	Description

	Response

(
	…
	The web server asks the mobile device to perform some operation.

	Request

(
	<obex disconnect, WAN UUID >
	The mobile device send an obex disconnect to the web server.

	Response

(
	-
	The web server destroys the session and responds with an empty response.


6.6.2
Server disconnection

When the server is done synchronising its content, it should disconnect the client. The following sequence should be used:

	
	Data
	Description

	

	
	

	Response

(
	<obex disconnect> <obex connection id>
	The web server send an obex disconnect to the mobile device and destroys the session.

	
	-
	The mobile device disconnects and sends no more requests to the web server.


6.7
Put

The PUT operation sends a named vCalendar object from the server to the mobile device. The PUT operation can only be invoked by the web server.

	
	Data
	Description

	

	
	

	Response

(
	<obex put, connection id>
	The web server sends a put request to the mobile device.

	Request

(
	<obex put response, WAN UUID >
	The mobile device performs the put operation and responds with the resulting obex data.


6.8
Get

The GET operation retrieves a named vCalendar object from the mobile device. The GET operation can only be invoked by the web server.

	
	Data
	Description

	Response

(
	<obex get> <obex target>
	The web server sends a get request to the mobile device.

	Request

(
	<WAN UUID ><obex get response>
	The mobile device performs the get operation and responds with the resulting obex data.


6.9
Timeouts

The operation will wait for N seconds before retry.  The timeout will be similar to one used on browsers and implementation dependent.

7 Use Case with IrMC
The user chooses “remote sync” and is prompted for the URL, for example www.somesite.com HYPERLINK http://www.hotestsync.com 
, userid and password. The userid will be sent to the server. The userid and the password will be saved in the local storage of the mobile device.  



When the WAP server receives this, it will try to establish an OBEX connection with the mobile device, acting as a primary from an OBEX point of view. An OBEX Connect request with a WAN UUID header and an Authentication challenge header will be sent. The WAN UUID header will contain a unique16 byte UUID that will be used to identify this session.  The server also sends an obex target header, indicating that a synchronisation is in progress.



When the phone receives the OBEX connect, it will respond with an OBEX Unauthorized response and an Authenticate Challenge of it’s own. The user id is sent in the realm field in the obex authorise header. From now on, the given UUID must be present when a request is sent from the phone to the WAP server. This is the only way that the server can recognize the phone. The UUID will be identified with the WAN UUID header, which means that the phone identifies itself with the given UUID. The client also assigns a connection id that is sent in an obex who header in every request.



Receiving this, the WAP server resends the same command as last time but this time also adds the Authenticate Response header.  The server always sends an obex target header, containing the connection id.



If the OBEX secondary at this stage verifies the received request-digest with the one generated by itself, the client is authenticated and the response will be an OBEX Success with an Authenticate Response header. 



At this stage the OBEX connection is up and the actual synchronisation can start. We are now in the middle of a WAP request/response pair and the WAP server response will now contain a OBEX Get command, asking for the mobile’s Change Log. The steps following are identical to the ones in a local synchronisation from an OBEX and IrMC point of view, the only real difference is the use of the WAN UUID header when sending from the mobile. Worth mentioning is that this form of remote synchronisation is not suited for a slow sync [see reference 2]. The user is supposed to do the first synchronisation locally, using for example cable or IR. 

8 Use of SyncML

8.1
SyncML Overview

SyncML was designed with a number of goals:  

· Reduce the number of messages being sent over the air,

· Reduce the message size,

· Provide a robust authentication mechanism,

· Transport independence,

· Datatype independence.

8.1.1
Reduce the number of messages being sent over the air

To achieve a reduction in the number of messages being transmitted, the SyncML device is required to determine which of the objects to be synchronised has changed since the last synchronisation for each server.  This way, the SyncML device may tell the server what has changed, and then the server may tell the device what has changed and together they may determine the most appropriate course of action.  In the case where there are no changes from the server or client, there could be as few as two messages exchanged.  In the case where the server is sending additions to the device, there could be as few as four messages exchanged.

A detailed explanation of the messages being exchanged may be found in the protocol document [8].

8.1.2
Reduce the message size

SyncML messages can be in either XML or WBXML.  The XML version is rather large, as the tags are clearly spelled out.  The XML version makes for easier debugging, but is much too large for normal use over a wireless network.  WBXML has the same structure as XML, but replaces the text strings with binary tags.  This produces much smaller messages, at the expense of human readability.  SyncML devices are required to support only XML or WBXML, not both.  SyncML servers must support both XML and WBXML.

8.1.3
Provide a robust authentication mechanism

SyncML has required authentication on the message level, and optional authentication for the datastores and individual objects.  The authentication is either Basic (username:password) or MD5 (username:password:nonce).  Stronger authentication and encryption are work items for the year 2001. To keep the authentication free from casual viewing, the data is base64 encrypted. 

It is possible to send an initial message to the SyncML server using Basic authentication, and have the server reject the message, asking instead for MD5 authentication.  It is also possible authentication for every message being sent to the server and device.

8.1.4
Transport Independence

SyncML has the capability of operating over a several transport mechanisms.  Version 1.0 specifies OBEX, WSP and HTTP. 

To achieve this independence, SyncML has defined a set of specifications and conformance for each transport.  Each transport must be able to carry a SyncML message reliably between SyncML devices. Each transport must be able to send a message to a device, and then be able to wait for a response from that device.

8.1.5
Datatype Independence

SyncML has specified a minimal set of objects for SyncML servers to support, but has not made the same requirements for SyncML clients. These objects are vCard 2.1, and vCalendar 1.0.  SyncML only requires that an object be a registered MIME type for it to be synchronised.  Both a client and server must support this object for it to be synchronised.  The Device Information object indicates which objects are supported for any datastore.  The Device Information Object must be exchanged on the first synchronisation between a client and server.

Typically, SyncML servers will support a wide variety of datatypes, while a SyncML client will support only one datatype (in the interest of smaller footprint).  If a new datatype is created, it is very easy for this to be supported.

8.2
Change of Client/Server Roles from IrMC Sync
SyncML uses the following description for client/server roles: 

“A client is a device (or application) which initiates a request for a session. The server is a device that passively waits for session requests from client devices. The server can either accept the request or reject it.”

IrMC defines the client as: 

“The IrMC Client is the device that initiates communication with an IrMC Server. Typical IrMC Clients are PCs. However, in some cases, PDAs, pagers and phones may also be IrMC clients. IrMC Clients can only communicate with IrMC servers. For instance, an IrMC client may request a particular Phone Book record from an IrMC Server.”

IrMC also defines the server as:

“The IrMC Server listens for requests from IrMC clients. Typical Servers are pagers, phones and PDAs. IrMC Servers can not initiate communication, and can only communicate with IrMC clients.“
8.3
Transport Bindings

The transport to be used should be either HTTP or WSP.  

Details on the transport bindings may be found on the SyncML website. [8]

8.4
Security

Each SyncML message must exchange authentication credentials on each message level and may exchange additional authentication for each datastore as well.  This authentication process will only guarantee that the client and server can rely on each other for the duration of the session.  For longer duration security, the basic level of authentication is not adequate, instead MD5 authentication should be used.  This will guarantee authentication not only over a session, but between sessions as well.

Encryption is not currently available in SyncML and must be supplied by the transports.  Transport from the mobile device to the gateway is well protected.  Transport from the gateway to the server should be sent via a secure channel, such as HTTPS.

8.5
Connection

The connect sequence sets up the connection from the mobile device to the synchronisation server. The client must choose a session id that is unique between the client and server and must determine what level of authentication to use (basic or MD5).  Once the authentication has been decided, the client is free to start the actual connection process. Note that the connect procedure is always invoked by the client and that the transport binding documents detail the connection process.

Persistent connections should be terminated only after the last expected response from the server has been received.

8.6
Sending and Receiving Information

Both WSP and HTTP transport bindings use the Post method for sending and receiving SyncML messages to the server..

8.7 Intermittent Connectivity

Both the WSP and HTTP transport bindings operate over networks with high latency and have timeouts built in.  Both transport bindings operate as follows: 

“In the case of a server timeout, the SyncML client SHOULD establish a new HTTP session with the HTTP server and attempt to resend the current SyncML package, beginning with the first SyncML command for which the SyncML client has not received an acknowledgement. In the event that the SyncML client requested that no responses be sent, the SyncML client SHOULD begin retransmitting with the first SyncML command in the SyncML package.

In the case of a client timeout during a SyncML client-initiated data synchronization, the SyncML server SHOULD clean up the TCP connection and do no further processing of the SyncML request.” [8]

8.8
Compatibility with IrMC Sync
Compatibility between SyncML and IrMC Sync assumes that, within the network, there is a target server to act upon synchronisation transactions.  This target server is the destination or origin for all ME synchronisation translations.  

This target server has to be able to differentiate between IrMC Sync and SyncML.  If the new transport link is OBEX, then there will be different OBEX target headers for IrMC Sync and SyncML.  If the new transport link is not OBEX, then the server will differentiate between IrMC Sync and SyncML by port number or MIME type.  In either case, there is a distinctive method for determining how to service the Sync transaction.

Compatibility also assumes that the existing data store types may be maintained as currently defined in both the client and the server.  Newer data store types may not need to maintain backwards compatibility since the older IrMC Sync clients would not understand the new types.

8.9
Use Case with SyncML

The user wants to synchronise data.  If the user has not previously set up the remote synchronisation, the user will have to enter in the URL for the server, the authentication data (user name, password, and possibly a nonce), as well as any datastores to be synchronised. The device will have to maintain this information in the local storage of the device.

The user then chooses with which remote server to synchronise and then starts the synchronisation.  The server will receive a message from the client with authorisation information and a Sync Alert for each datastore to be synchronised.  The server will send back a message to the client with a status for all of the Sync Alerts as well as the authorisation.  Note that the server has the option to tell the client to not send any more authentication at this point.  Likewise, the server could tell the client to switch to more robust authentication and have it resend the first message with MD5 authentication.

The client will send a message to the server with all of the changed data since the last synchronisation with that server. The server will respond with a message containing a status on all of the changed data and all of server-changed data since the last synchronisation.

If there is any data from the server, then the client will have to send a message back to the server with status on the server’s changed data requests, and possibly some MapItems.  MapItems are used to tell the server how to map the local UIDs to the server’s UIDs.  MapItems are only sent to the server if the server has sent any new objects to the client.  If the client has sent a new objectto the server, the server will take care of any UID mapping at that time.

If the client had sent any MapItems to the server, then the server will send a final message to the client with a status on all of the MapItems sent.

The user will then see a prompt telling them the synchronisation is now complete and, possibly, indicate any errors.
Annex A (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	22/09/00
	9
	TP-000143
	001
	1
	Introduction of PUSH and TARGET
	3.0.0
	3.1.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	


















































OBEX Success + WAN UUID header + Authenticate Response header








OBEX Connect + Authenticate Challenge header + Authenticate Response header + connectionid








OBEX Unauthorized + WAN UUID header  + Authenticate Challenge header + Who








OBEX Connect With Authenticate Challenge header + WAN UUID + target





� HYPERLINK http://www.cool&funcysync.com �� � HYPERLINK "http://www.somesite.com" ��www.somesite.com��OBEX PUSH








�PAGE \# "'Page: '#'�'"  �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.


�PAGE \# "'Page: '#'�'"  �� Enter the CR number here. This number is allocated by the 3GPP support team.


�PAGE \# "'Page: '#'�'"  �� Enter the revision number of the CR here. If it is the first version, use a "-".


�PAGE \# "'Page: '#'�'"  �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�


�PAGE \# "'Page: '#'�'"  �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.


�PAGE \# "'Page: '#'�'"  �� Mark one or more of the boxes with an X.


�PAGE \# "'Page: '#'�'"  �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.


�PAGE \# "'Page: '#'�'"  �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.


�PAGE \# "'Page: '#'�'"  �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�


�PAGE \# "'Page: '#'�'"  �� Enter the date on which the CR was last revised.


�PAGE \# "'Page: '#'�'"  �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".


�PAGE \# "'Page: '#'�'"  �� Enter a single release code from the list below.


�PAGE \# "'Page: '#'�'"  �� Enter text which explains why the change is necessary.


�PAGE \# "'Page: '#'�'"  �� Enter text which describes the most important components of the change. i.e. How the change is made.


�PAGE \# "'Page: '#'�'"  �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).


�PAGE \# "'Page: '#'�'"  �� Enter each the number of each clause which contains changes.


�PAGE \# "'Page: '#'�'"  �� Enter an X in the box if any other specifications are affected by this change.


�PAGE \# "'Page: '#'�'"  �� List here the specifications which are affected or the CRs which are linked.


�PAGE \# "'Page: '#'�'"  �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.


�PAGE \# "'Page: '#'�'"  �� This is an example of pop-up text.





CR page 1

